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Fundamental scaling laws of on-off intermittency in a stochastically driven
dissipative pattern-forming system
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Noise-driven electroconvection in sandwich cells of nematic liquid crystals exhibits on-off intermittent
behavior at the onset of the instability. We study laser scattering of convection rolls to characterize the
wavelengths and trajectories of the stochastic amplitudes of the intermittent structures. The pattern wave-
lengths and statistics of these trajectories are in quantitative agreement with simulations of the linearized
electrohydrodynamic equations. The fundamentalt23/2 distribution law for the durationst of laminar phases
as well as the power law of the amplitude distribution of intermittent bursts are confirmed in the experiments.
Power spectral densities of the experimental and numerically simulated trajectories are discussed.
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I. INTRODUCTION

A. Intermittency

Intermittency is a prominent phenomenon observed i
large variety of nonlinear dynamical systems. The ‘‘clas
cal’’ examples of intermittent behavior, the so calle
Pomeau-Manneville types I–III@1,2#, can be found in deter
ministic systems where upon a certain change of a con
parameter a fixed point of the system~corresponding to a
periodic trajectory! becomes unstable. One of the charact
istic features for the distinction of the different types of i
termittency is the statistics of the duration of the quasip
odic ~‘‘laminar’’ ! phases which are irregularly interrupted b
chaotic parts of the trajectory.

A fundamentally different type of intermittent behavio
has been observed in coupled chaotic oscillators@3–5#. This
phenomenon can be found in dynamical systems at the
bility threshold when a stochastic or chaotic process cou
multiplicatively with the system variables. The term on-o
intermittency has been coined for this phenomenon. In s
tems that exhibit this type of intermittency, there is no sh
transition from an equilibrium quiescent state into an act
state but intermittent behavior occurs for a range of value
the control parameter, and the system has to be characte
by a statistical description. It resides in a ground~off! state
during quiescent or laminar periods, which are interrupted
bursts of large scale excursions of the system variables
the on state. Like the other types, on-off intermittency
characterized by fundamental statistical properties of the
termittent process which have been extensively studied
recent years, experimentally as well as theoretically@6–25#.
A statistical analysis reveals characteristic asymptotic la
that describe the universal behavior of such systems. It
been shown that the distribution of the durationst of the
laminar phases in on-off intermittency follows a characte
tic power law with exponent23/2 @7# in the vicinity of the
instability threshold. Other fundamental scaling laws ha
been predicted for the distribution of the amplitudes of
1063-651X/2002/65~4!/046229~13!/$20.00 65 0462
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bursts@3,4,26,27# and the power spectrum of the trajectori
@21–23,26#.

Experimental evidence for on-off intermittent behavi
has been reported in a number of very different physi
systems. A simple experimental realization can be achie
in coupled oscillator circuits@8#; other systems described i
the literature involve a gas discharge plasma@9# and a ferro-
magnetic resonance spin wave experiment@10#. While the
fundamental validity of the asymptotic scaling laws is esta
lished theoretically, it is not easy to confirm this prediction
experiments. In the spin wave system@10#, a power law in
the distribution of laminar phases has been reported over
slightly more than one order of magnitude int. In the gas
discharge experiment@9#, the power law behavior is covere
by an exponential function.

Among the experimental situations where on-off interm
tent behavior has been unambiguously detected is electr
drodynamic convection~EHC! in nematic liquid crystals
driven by multiplicative noise@11#. This system turns out to
be particularly well suited for an experimental characteri
tion. It represents a spatially extended dissipative syst
Compared to other reported systems, the EHC experim
shows an additional spatial periodicity of the intermitte
bursts where a wavelength selection process is involved.
cess to the control parameters and observation of trajecto
is straightforward. The physical mechanisms are well und
stood. Many material parameters involved are accessibl
independent experiments. The validity of the asympto
scaling law for the durationt of laminar phases has bee
confirmed experimentally@11#.

In this study, a modified optical setup is used in order
record pattern wavelengths and amplitudes with high sa
pling rates. The trajectories of pattern amplitudes are
tracted from the laser scattering profile produced by the n
atic cell. In addition, a simulation of the linearized dynam
equations is presented. Trajectories obtained in the sim
tions are compared to the experimental results to test
©2002 The American Physical Society29-1
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validity of a linearized treatment of the system dynam
@28# near the instability threshold.

B. Nematic electroconvection

Nematic EHC@29–34# represents a standard system
dissipative pattern formation; its fundamental features
well understood today@35#. The instability is driven by in-
teractions of an external electric field with electric charg
present as either impurities or dopants in the nem
material.

The experimental geometry is sketched in Fig. 1. T
ground state with the nematic director~optic axis! uniform
along an easy axis in the cell plane is achieved by pro
surface treatment of the cell plates. An electric field is a
plied normal to the cell plane. Nematic material with neg
tive dielectric anisotropyDe is chosen to prevent the spla
Fréedericksz instability. In the electric field, the dielectr
torque stabilizes the ground state, but small thermal fluc
tions of the director field in connection with an anisotrop
conductivity of the nematic generate a periodic space cha
modulation in the cell plane. The interaction of these sp
charges with the electric field leads to convective flow wh
in turn generates a destabilizing viscous torque on the di
tor field. Above a threshold voltageUc , this torque exceeds
the stabilizing dielectric and elastic torques and a perio
pattern of convection rolls and corresponding director defl
tions is formed. In the simplest case, the wave vector of
first instability is along the director~normal rolls!. The roll
structure appears in optical transmission as an array of
allel stripes in the cell plane~Fig. 1!.

Electroconvection is conventionally driven with a pe
odic ac voltage~to avoid sample degradation in dc fields!. To
understand the mechanism of pattern formation it is esse
to note that director and charge fields respond on differ
time scales to the alternation of the electric field. The sy
metry of the dynamic equations requires that their time
pendence with respect to a periodic driving field is antisy
metric. This is reflected in the existence of two differe
types of patterns. In the low frequency ‘‘conduction’’ regim
charge relaxation is fast compared to the ac frequency.
charge density alters its sign with the applied field; the s
of the director deflection is preserved. The voltage for

FIG. 1. Schematic drawing of the convection rolls and direc
field in a nematic sandwich cell. A snapshot of the spatial modu

tions of director and charge fields (w̃,q̃) in the cell midplane is
sketched.
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onset of conduction rolls increases monotonically with f
quency. At the cutoff frequencyf c , the threshold voltage
curve intersects that of the ‘‘dielectric’’ patterns. In the d
electric regime abovef c , the director deflections alternat
with the field while the charge density modulation retains
sign. Figure 2 shows the stability diagram for the syst
studied in this paper. Figure 2~a! gives the onset voltage fo
the first instability, toward normal rolls. The correspondi
wave numbers are shown in Fig. 2~b!.

When a stochastic excitation scheme is used where
driving field has no deterministic component~such as, e.g.,
the dichotomous Markov process that is considered in
paper! the system does not exhibit a sharp transition from
quiescent to the convective state upon variation of the c
trol parameter, but shows intermittent behavior. Two diffe
ent regimes are found which have many features in comm
with the corresponding conductive and dielectric regimes
the deterministic case. At onset of the instability, one of
system’s characteristic times~director or charge relaxation!
becomes comparable to the characteristic time of the n
tstoch. A considerable qualitative change of onset and app
ance of the convection patterns@36,37# is observed. A typical
snapshot is shown in Fig. 3.

Nevertheless, there was little interest until recently in t
quantitative statistical interpretation of the structures at
instability threshold. The main focus of research has b
directed to the study of superimposed deterministic and
chastic driving fields and the construction of pattern st
diagrams. The empirical concept of a threshold voltage
been applied in previous experimental investigations
noise-driven EHC@36,38–42# and statistical methods hav
been applied to test various stability criteria@43–46,28#. The
largest Lyapunov exponentl of the trajectories of the system
variables, which is analytically known@28#, provides a quan-
titative measure for the instability threshold, but the cruc
problem is the experimental determination of the threshold
a system with limited dynamical range and additive noi
The statistical analysis of the intermittent trajectories p

r
- FIG. 2. Threshold voltages~a! and wave numbers~b! for driving
with periodic and stochastic@dichotomous Markov process~DMP!#
square waves of~mean! frequencyn. Periodic excitation: experi-
ment (s), theory ( ); stochastic excitation: experiment (d),
theory ( ). The method for the experimental determination
stochastic thresholds is explained in the text. The symbolL indi-
cates the frequency where the stochastic measurements pres
below were performed.
9-2
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vides an experimental tool to characterize the stabi
threshold,l50 @11#.

The observation and quantitative characterization of
dissipative patterns under stochastic excitation is achieve
this study by exploring the phase grating formed by the s
tially periodic deformed director field. The laser scatteri
profile resulting from the nematic convection patterns is
corded. A two-dimensional~2D! detector allows one to ob
serve the complete scattering profile of the transmitted la
light and to study the wave vector orientation and wa
length selection process with a sampling rate of 25 s21, and
alternatively a photodiode positioned at the scattering re
enables us to record the trajectory of the dominant m
with faster sampling rate and higher intensity resolution.

II. SAMPLE PREPARATION AND EXPERIMENTS

A. Sample preparation

We use the nematic mixture Mischung 5~Halle! which
consists of four disubstituted alkyl~oxy!phenyl-
alkyloxybenzoates. This material has been used in prev
EHC experiments@11,37,47,48#. The mixture is nematic a
room temperature; its clearing point is 70.5 °C. The comm
cial sandwich cell~LINKAM ! used in the experiments ha
cell gaps of 25.8mm. The glass plates are covered wi

FIG. 3. Transmission microscope images of the noise-dri
pattern during a burst~a! and space-time plot of a cross sectio
along the wave vector~b!. The horizontal axis gives the spatia
coordinate along the pattern wave vector~director easy axis!. Only
in adjacent bursts does the spatial phase of the pattern appea
related; long laminar phases destroy such correlations.
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transparent indium tin oxide electrodes (5 mm3 5 mm);
they are polyimide coated and rubbed antiparallel for pla
surface alignment. The temperature of the samples is c
trolled by a Linkam heating stage with an accuracy of 0.1
The sample temperature was set to 32 °C in all experime

B. Material parameters

All relevant material parameters for the simulation of t
electrohydrodynamic equations except for some viscosi
have been measured in independent experiments@49,50#.
The conductivity of the nematic samples differs by abo
20% between individual cells; values for a given cell a
almost constant in time. In order to prevent long-term tren
of the conductivity, we reheat the material into the liqu
phase between subsequent runs of the experiment; sim
procedures were proposed in@51,52#. All measurements pre
sented in the diagrams of this paper were performed c
secutively with the same cell, in order to obtain quanti
tively comparable results for the different statistic
investigations. Differences in conductivity between ind
vidual cells may lead to variations of the respective thre
olds but do not influence the statistical characteristics.

In order to complete the parameter set for the numer
simulations, we fitted the threshold curves and critical wa
numbers for deterministic square wave excitation where
experiment yields sharp thresholds toward the first insta
ity. With a fixed parameter set~Table I!, good agreemen
between numerical results and experimental data is achie
across the whole frequency range investigated~Fig. 2!. The
same parameter set is used thereafter for the calculatio
the Lyapunov exponents and stochastic trajectories.

C. Excitation

The wave form of the driving electrical voltage is synth
sized by a computer and subsequently amplified. We ge

n

or-

TABLE I. Material parameters~cgs units! used in the simula-
tions. The parameter set for the simulations of stochastic trajecto
is taken from the fit of threshold voltage and wave number cha
teristics for periodic ac driving; see also Fig. 2. Experimental d
for Mischung 5 are taken from@49,50#.

Parameter Simulation input Experimental valu

no 1.4935 1.4935
ne 1.6315 1.6315
« i 6.24 6.24
«' 6.67 6.67
s i (s21) 90.0 117.0
s' (s21) 60.0 90.0
a1 (g cm21 s21) 0.1
g1 (g cm21 s21) 3.3 3.6
g2 (g cm21 s21) 23.3
h1 (g cm21 s21) 3.62
h2 (gcm21 s21) 1.0
K11 (g cm s22) 14.931027 14.931027

K33 (g cm s22) 13.7631027 13.7631027
9-3
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THOMAS JOHN, ULRICH BEHN, AND RALF STANNARIUS PHYSICAL REVIEW E65 046229
ate the driving voltage curve with a sampling rate of 10 kH
Although the spectrum of this wave form is in principle di
crete, we can consider it as quasicontinuous in the freque
range relevant in the experiments~below 500 Hz!. Within
this study, we have used a few special wave forms, which
detailed in the following. Figure 4 visualizes their sign
shapes and shows the respective power spectra.

Periodic square waveexcitation is used to construct th
stability diagram for deterministic driving. We exploit th
sharp threshold toward the first instability for adjustment
system parameters and a test of the long-term stability of
samples. For example, the cutoff frequency is a sensi
measure to reveal even small changes of the sample con
tivity.

Thedichotomous Markov process~DMP! is the stochastic
wave form used in all experiments presented below. I
characterized by random jumps of the electric field betw
the two values1E and 2E, with an average jump ratea.
The time intervals between consecutively jumps are dist
uted asDt i52(1/a)ln xi , where xiP(0,1# is a uniformly
distributed random number. In analogy to a determinis
square wave excitation with frequencyn, we define the ‘‘av-
erage frequency’’n5a/2. The DMP power spectrum i
Lorentzian with its maximum at frequency zero and a h
width related to the jump rate bya/p @Fig. 4~b!#. An impor-
tant feature that facilitates the numerical calculations is t
all terms quadratic in the electric field are time independ
in the DMP. An analytical calculation of the sample stabil
threshold and the critical wave numbers has been perfor
@28#. Technically, identical realizations of the stochastic p
cess can be reproduced with the computer. This allows u
use identical noise sequences for experiment and simula
when details of the trajectories of pattern amplitudes are
interest.

Other stochastic processeshave been tested in addition
experiments. While the DMP randomizes the phases o
periodic square wave, another stochastic process can be
thesized that randomizes the amplitudes of the square w
but keeps the jumps equidistant. This randomization of
amplitude can be combined with a random phase of
jumps. Such processes do not complicate the nume
simulations; the electric field is piecewise constant and
equations of motion can be integrated straightforwardly

FIG. 4. Excitation wave forms and corresponding power sp
tral densities for periodic square wave~a! and a DMP~b!.
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turns out that the statistical properties of the trajectories
the derived scaling laws for these stochastic processes a
full accordance with those for the DMP. Therefore, we w
discuss only the DMP results as representative of other ty
of stochastic excitation.

D. Data acquisition

The sample cell is irradiated by a He-Ne laser with wav
length l laser5632.8 nm at normal incidence. The beam d
ameter is about 1 mm. The scattered light is monitored o
screen at a maximum distance of 1.3 m from the cell~Fig. 5!.
When the sample is in the ground state~zero electric field!,
only a weak background scatteringA0(t) is observed around
the primary beam. Since we are interested in scattering f
spatial deformations of the director field, we correct the r
data with a time averaged intensityĀ0 by A(t)5uAraw(t)
2Ā0u. This correction is marginal since the background s
nal is in general three orders of magnitude smaller than
amplitude of the scattering reflex at the position of t
photodiode.

From the two-dimensional scattering images, waveleng
and orientations of the patterns can in principle be conti
ously extracted. However, because of bandwidth limitatio
in signal processing we use two different equipments
record the scattering data.

A commercial video camera is employed to take 2D sc
tering images with an acquisition rate of 25 frames per s
ond and 8-bit intensity resolution. This enables us to stu
the evolution of the mode spectrum and to access the
wave vector information, although time and intensity reso
tion are limited.

The 2D images show that at given frequency, the patt
is dominated by a single mode~see Fig. 6! with fixed wave
vector but varying amplitude. Any low order scattering refl
of that mode is representative for the momentary pattern,
it is sufficient to record only the scattering intensity at a fix
position ~here, we use one of the two symmetric second
der reflexes!. For that purpose we employ a photodiode w
aperture 7 mm2 adjusted to the reflex of interest.

The photodiode signal is digitized and the trajectory
stored in a computer. We use a fast~0.2 ms time resolution!
12-bit analog-to-digital converter~ADC! for measurements
with high time resolution such as, for example, the deter

-
FIG. 5. Sketch of the experimental setup. Abbreviations us

PC, personal computer; AD, analog-to-digital; DA, digital-t
analog; and LC, liquid crystal.
9-4
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FUNDAMENTAL SCALING LAWS OF ON-OFF . . . PHYSICAL REVIEW E65 046229
nation of laminar phases, and alternatively a slow~0.01 s!
24-bit ADC for accurate amplitude measurements over la
dynamic ranges.

III. OPTICS

The electroconvection rolls in the nematic material p
duce spatial periodic director deflections

w̃~x,z,t !5w~ t !sin~kxx!sin~kzz!, ~1!

which lead to a modulation of the effective refractive ind
neff for the transmitted extraordinary beam,

neff„b~x,z!…5
none

Ano
2 cos2 b~x,z!1ne

2 sin2 b~x,z!
, ~2!

whereno andne are material parameters andb is associated
with the angle between the electric field vector and the o
cal axis@53#. A phase and amplitude grating is formed in t
cell. There has been some discrepancy in literature abou
usage of refractive or ray index in these calculations. For

FIG. 6. Scattering image ata52n5160 s21 ~jumps per sec-
ond! DMP excitation recorded with a charge-coupled device ca
era. ~a! 2D snapshot during an intensive burst att5500 s; ~b!
scattering angle–time plot of intensity profiles taken aty50, pre-
sented in inverse gray scale. The constant angle of the indivi
reflexes in subsequent bursts reflects the fast and stable wavel
selection mechanism. An arrow marks the position of the photo
ode, set to the most intense scattering reflex of the most uns
wave number.
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small fluctuations considered here, both approximations l
to similar results. In order to establish a relation between
experimental observations and the results of the simulat
of the director and charge fields, it is necessary to calcu
the diffraction efficiency of a given periodic director field
We use the eigenfunctionsw̃(x,z,t) from the linear stability
analysis. Using Fermat’s principle it is possible to determ
the optical path, the resulting phase differencef(x,t), and
the intensity profile of light passing the cell@53–60#. At
small deflection angles, one can assume that individual l
rays pass the cell without deflection, creating a phase gra

f~x,t !5
2p

l laser
E

0

d

neffdz

'E
0

p/kz2pne

l laser

3F12
ne

22no
2

2no
2

w~ t !2cos2~kxx!sin2~kzz!Gdz.

~3!

Analytical integration overz along a straight path throug
the cell @61# yields a periodic phase modulationDf(x,t)
with twice the wave numberkx and a quadratic dependenc
on the director deflection,

Df~x,t !5
nep

2~ne
22no

2!

2no
2kzl laser

w~ t !2cos2~kxx!}w~ t !2cos2~kxx!

}w~ t !2cos~2kxx!. ~4!

In this approximation, the intensity modulation withkx
due to focusing effects of the inhomogeneous refractive
dex profile is neglected and only even order reflexes app
in the scattering image. This is in agreement with the exp
mental observations. The second order reflex dominates
small amplitude patterns, and with increasing amplitude
the director deflectionsw(t), higher order reflexes can b
observed. We note that the amplitude grating~which pro-
duces the well known shadowgraph images in conventio
orthoscopic microscopy! is effective as well; it is most
prominently reflected in the weak first order reflexes~see
Fig. 6!.

The relationkx52p sinum/(mllaser) connects the scatter
ing angleum of the mth order reflex with the wave numbe
kx(um). The scattered light intensityA(t) of the phase grat-
ing at the second order reflex is related to the square of
Bessel function of the first kind,J1„fmax(t)…, with the ampli-
tude of the phase gratingfmax in the argument@61–66#. For
small director deflectionsw(t), the intensity at the secon
order reflex is proportional to the fourth power ofw

A~ t !}J1
2
„fmax~ t !…}fmax

2 ~ t !}w4~ t !. ~5!

By numerical integration of the nonlinear Euler-Lagran
equations we have calculated the actual propagation of l
beams through the sample. The numerical integration allo

-

al
gth
i-
le
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THOMAS JOHN, ULRICH BEHN, AND RALF STANNARIUS PHYSICAL REVIEW E65 046229
for the deflection of light and thus for intensity modulatio
by focusing effects. These simulations confirm the relat
A(t)}w(t)4 even for large director deflectionsw(t)&1.

The numerical simulation of EHC patterns yieldsc
5]xw ~see below!, which represents the director deflectio
for a given mode. For comparison of simulatedw and ex-
perimental intensities we use the relation

Atheor~ t !5const3w4~ t !. ~6!

We emphasize that we compare the experimental and s
lated pattern amplitudes only on a relative level, since
efforts have been made to relate calculated absolute sca
ing intensities to voltages measured by the photosen
Since the simulations use a linear model, absolute scalin
pattern amplitudes is not relevant for the fundamental sta
tical properties of the system.

IV. NUMERICAL SIMULATIONS

A. Basic equations

The basic equations for the charge and director fields
the method for analytical derivation of the Lyapunov exp
nents in the electrohydrodynamic instability were describ
in detail in @28#.

The important quantities describing the system dynam
are the charge densityq̃ and the amplitude of the directo
deflectionw̃ ~see Fig. 1!. A standard technique to describ
the time evolution of small amplitude periodic patterns is
use of linearized differential equations and a tw
dimensional mode ansatz for the two quantities involved

w̃~x,z,t !5w~ t !sin~kxx!sin~kzz!, ~7!

q̃~x,z,t !5q~ t !cos~kx x!sin~kzz!. ~8!

In the relevant parameter range, the pattern is spati
periodic along the director easy axis (x direction! This result
of the linear stability analysis is in agreement with the e
perimental observations. Therefore, we consider only the
bility of modes with the wave vector parallel to thex axis.
The ~stress-free! boundary conditions for the director field a
the glass platesw̃(z50)5w̃(z5d)50 are satisfied bykz

5p/d. For convenience, the director deflectionw̃ is substi-
tuted by the curvaturec̃5]xw̃. A system of two ordinary
differential equations is derived from the torque balan
Navier-Stokes, and Maxwell equations. After linearizati
we obtain an ordinary differential equation system in tim
for the vectorz(t)5„q(t),c(t)…T,

d

dt
z~ t !52S 1/Tq sHE~ t !

aE~ t ! L12L2E~ t !2D z~ t !, ~9!

whereL1 ,L2 ,Tq ,sH , and a are parameters related to th
viscous, elastic, and electric properties of the liquid crysta
well as to the wavelengthkx of the modes@28#. The electric
field amplitudeE(t)5U(t)/d corresponds to the excitatio
voltage U(t). In the case of piecewise constant excitati
04622
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~such as the deterministic square wave and DMP descr
above!, E(t) assumes only two values6E, and all elements
of the matrix are constant between consecutive jum
Within a time intervalDt i of constant excitation field, inte
gration of the differential equation gives a solution in t
form of a sum of two exponentials. The solutionzi from the
i th integration step is taken as the starting value for thei
11)st step. The complete trajectory for givenkx , E, and set
of ~random! timesDt i for jumps of the excitation voltage is
calculated with an initial vectorz05(q,c)u t50. At the dis-
crete jump timestn , the solution is

z~ tn!5T(sn)~Dtn!•••T(s1)~Dt1!z~0!, ~10!

Dt i5t i2t i 21 , si5sgnE~ t i.t.t i 21!,

Tn5)
i 51

n

T(si )~Dt i !, ~11!

whereT(si )(Dt i) is the 232 time evolution matrix for thei th
interval.

For a detailed statistical analysis ofc(t), in particular for
the calculation of power spectral densities~PSD’s!, the tra-
jectory can be filled in the intervals between the jumps us
the exact exponential solutionsT(si )(t2t i 21).

In the particular system studied here, the eigenval
ETn(E,kx) are real and positive. For periodic square wa
driving, all intervalsDt i are equal and the product isTn
5(T1T2)n/2. For the calculation of the Lyapunov exponen
it is sufficient to considerE(T1T2). This reproduces the
well known results of classical theory using Floquet metho
@32,33#.

In the case of stochastic excitation all theDt i are different
and the calculation of the Lyapunov exponents leads to
infinite product of 232 random matrices@28#. This system
yields two real Lyapunov exponentsl1.l2 which are re-
lated to the eigenvalues of the product of stochastic matr
Tn . In particular, the largest Lyapunov exponent~in the fol-
lowing denoted byl! is found from

l5 lim
n→`

1

tn
ln$max~ETn!%. ~12!

For DMP excitation, the Lyapunov exponents can be o
tained analytically@28#. Figure 7 shows the Lyapunov expo
nent for the critical wavelength calculated with the para
eters specified above. In the linear model,uzu is growing to
infinity (l.0) or shrinking to zero (l,0), depending on
the value of the largest Lyapunov exponent. The selec
wavelengths and threshold voltages for a given freque
and set of material parameters are calculated from the ne
curve. The wave number is varied and the minimumEc of
the neutral curve provides the critical wave numberkc .

Because of the symmetries of Eq.~9!, one of the system
variables (q,c) keeps its sign while the other variable has
change its sign with the polarity of the applied field. At p
riodic excitation, the system is synchronized with the appl
field and the conduction (q alternating periodically! and di-
9-6
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electric (c alternating periodically! regimes are distin-
guished. In the case of DMP excitation, the support of one
the variables still preserves the sign and the two regimes
still be distinguished@28#. In the following, we will discuss
only the low frequency conduction regime; Fig. 8 shows d
tails of a simulated trajectory. The slow variable is the dire
tor deflection, which is directly related to the measured qu
tity, the scattering intensity. Due to the coupling of (q,c),
both the director deflection and the envelope of the cha
density curves show the same long-term (t.1/n) character-
istics.

B. Boundaries

In the linear description, the trajectories tend to infinity
zero for all values oflÞ0. However, a realistic descriptio
of the experiments has to consider boundaries forz. Nonlin-

FIG. 7. Analytically calculated Lyapunov exponentl of the
most unstable modekc50.204 mm21, for DMP excitation withn
580 s21. Material parameters are taken from the fit of period
excitation thresholds and wavelengths. The valuel50 defines the
critical voltageUc

theor514.2 V.

FIG. 8. Details of a simulated trajectory ofc and q at n
580 s21, at l50 ~‘‘conductive’’ regime! for a constant lower
boundarycmin5531023; see Eq.~13!. In the low frequency regime
the slow variablec(t) keeps its sign, whereasq(t) oscillates syn-
chronously with the applied fieldEt .
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earities in the system limit the excursion of the system va
ablesz to large values while additive noise prevents th
unlimited decay. In order to compare the results of simu
tions and experiments, we introduce limits for the direc
deflection~curvaturec) by clipping each time step,

c~ t i !5H cmax if c~ t i !.cmax,

cmin if c~ t i !,cmin ,

c~ t i ! otherwise.

~13!

Because of the linearity of the ordinary differential equati
system @Eq. ~9!#, only the ratio of the upper and lowe
thresholds is important. A constant factor in the amplitude
irrelevant for the statistical properties and scaling laws. He
we assume that the dynamic range is two orders of ma
tude, 531023,c(t i),0.5. This dynamical range reflect
approximately the situation of a thermal background stim
lation ^w2&1/2;g1 /K11kx

2;5 mrad@51,52,67# and an upper
limit of 0.5 rad. For negative Lyapunov exponents, the low
boundary is necessary to prevent the unlimited decay
c(t). The choice of the value of the lower boundary has
strong effect on the number of bursts per unit time~see Fig.
9!, but only a small effect on the fundamental statistical la
~see below!.

The assumption of a well defined lower limit is of cour
artificial and cannot describe the actual experimental beh
ior for very small pattern amplitudes. A more realistic a
sumption considers low amplitude additive noise in the va
able c(t i). We have studied this case by adding Gauss
random numbers with a given varianceD @68# at each time
step. For zero electric field, Eqs.~9! decouple andc de-
scribes an Ornstein-Uhlenbeck process~OUP!, which is
characterized only byD and an exponentially decaying au
tocorrelation with correlation timetOUP}1/l related to the
Lyapunov exponent at zero voltage~see Fig. 7!. One conse-
quence of such additive noise is that the simulated traje

FIG. 9. Two simulated trajectories atl,0 for different constant
background levels~a! cmin553103 and ~b! cmin553104. The tra-
jectories appear to be significantly different, whereas the statis
analysis produces the same fundamental power laws.
9-7



i-
th

-
f
n-

tio

er
,
i-
e

s
ha
ha
n

io
tiv
th
u
ha
th

n
a
th

g

age
s
he

ntal

le,
red

and
ons,
ve-
ob-
the
al

tial
ere-
ther
ially
rom
en
f re-
es.
ting
lar,
x of
in

c-
is

ans
n

ess

m,
he

n

he

vel
ext
the

e
-

e

met-
lot

is
y.
itie

THOMAS JOHN, ULRICH BEHN, AND RALF STANNARIUS PHYSICAL REVIEW E65 046229
ries for the slow variablec(t) can change sign~see Fig. 10!,
in contrast to Eq.~13!. This is not relevant for the compar
son with the scattering experiment which is insensitive to
spatial phase of the pattern. If the varianceD is chosen such
that the mean square amplitude ofc in the absence of elec
tric fields gives^c2&1/25cmin , the statistical properties o
ucu are qualitatively identical with the simulations using co
ditions ~13!.

V. RESULTS AND DISCUSSION

A. Pattern images

The conventional technique to observe pattern forma
in EHC is the shadowgraph method@53# in combination with
a transmission microscope. An instant picture of a patt
burst, recorded by means of orthoscopic microscopy
shown in Fig. 3~a!. The dynamics of this pattern can be v
sualized best when the intensity in a cross section perp
dicular to the rolls is scanned and a spatiotemporal plot a
Fig. 3~b! is analyzed. Some bursts, in particular those t
appear in fast sequences, are correlated in their spatial p
After long laminar phases, however, there is in general
spatial correlation remaining between the bursts. For stat
ary rolls, this loss of correlation is a consequence of addi
noise in the system; it triggers new modes whenever
pattern amplitude reaches the thermal noise level. In s
cases, the new fluctuation mode has an arbitrary spatial p
with respect to the previous convection pattern. On the o
hand, there are sequences of bursts in Fig. 3~b! that preserve
spatial correlation. They can be attributed to amplificatio
of the same mode which has disappeared in the optical im
but has not reached the level of additive noise during
intermediate laminar phase.

B. Scattering images

Figure 6~a! shows a snapshot of the scattering ima
originating from a burst in a DMP-drivend525.8 mm thick

FIG. 10. Same as in Fig. 8 but with background additive no
in c(t). With additive noise,c(t) can change its sign occasionall
The pattern amplitude as well as the optical scattering intens
are, however, insensitive to the sign ofc.
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nematic cell, taken with the 2D camera detector. The im
shows the primary beam atu50 and diffuse scattering spot
from the periodic spatial director modulation in the cell. T
scattering reflexes concentrate on thekx axis, i.e., normal
electroconvection rolls are observed. The wave numberkx of
the pattern producing this image of 0.2mm21 is derived
from the spot positions; the director period isldir52p/kx
532 mm. Below the scattering image, in Fig. 6~b!, the time
dependence of the intensity profile taken along the horizo
symmetry axis of the profile (ky50) is plotted. For better
reproduction, the image is plotted with inverse gray sca
dark spots corresponding to high amplitudes of scatte
light and consequently to large director modulations~bursts!.
The bursts are characterized by a narrow wavelength b
and the reflexes remain approximately at the same positi
i.e., in all bursts the patterns have nearly the same wa
lengths. The wavelength selection process itself is not
servable in the images; it is obviously fast compared to
video rate of 25 Hz and occurs below the level of optic
sensitivity of our camera. The information about the spa
phase of the patterns gets lost in the scattering image, th
fore we cannot determine from the scattering images whe
the convection rolls of subsequent bursts appear spat
phase correlated or not. The essential information taken f
the 2D images is that the wavelength of the noise-driv
patterns is constant and the scattering image consists o
flexes at fixed scattering angles with varying amplitud
Thus, we achieve a considerable data reduction by restric
consideration to the strongest scattering reflex. In particu
the detector is placed at the second order scattering refle
the most critical wave number, indicated by the arrow
Fig. 6~b!.

C. Trajectories

The intensity of scattered light at the position of the se
ond order scattering reflex of the first unstable mode
shown in Fig. 11. The curves have been digitized by me
of the 24-bit AD converter. The random electric excitatio
field Et uses identical realizations of the stochastic proc
for all three trajectories, with different amplitudesE. Con-
cerning the effects of the multiplicative noise in the syste
details of the three curves can be directly compared. T
characteristic frequencyn was 80 Hz, corresponding to a
average of 160 jumps/s of the sign ofEt . Figure 11~a! shows
the raw signal from the detector for a voltage below t
critical Uc

expt. The contributions of~additive! background
fluctuations to the detector signal are of the order of 1023 V
around a constant offsetĀ05331023 V. Bursts of the spa-
tially periodic pattern that exceed the background noise le
occur infrequently. From arguments discussed in the n
sections we conclude that the excitation voltage is below
stability threshold~defined by the Lyapunov exponentl
50). In Fig. 11~b!, the voltage is approximately equal to th
critical voltage (l50). The characteristic feature of the tra
jectory is its mirror symmetry of high and low amplitud
excursions of the scattering intensityA(t) on a logarithmic
scale. The rise and decay sections of the graph are sym
ric. We note that, in a linear presentation of the same p

e
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FUNDAMENTAL SCALING LAWS OF ON-OFF . . . PHYSICAL REVIEW E65 046229
A(t), the high amplitudes appear as prominent bursts ou
the background level, and the typical intermittent behavio
acknowledged. At higher voltages@Fig. 11~c!#, the trajectory
will be predominantly in the saturation region~‘‘on’’ state!,
interrupted by short laminar phases. These intrinsic sym
tries reflect theoretical predictions for on-off intermittent b
havior @69#.

The amplitudes in Figs. 11~b! and 11~c! have been cor-
rected for the background intensity,A5uAraw2Ā0u. This cor-
rection attempts to separate the constant~stray light! back-
ground signal and additive~thermal! noise in the trajectories
Since these contributions are comparably small, the cor
tion affects only the low amplitude sections of the trajec
ries. It facilitates the identification of laminar phases a
enables us to visualize the symmetry of burst and quies
periods on the logarithmic scale.

D. Distribution of laminar phases

The statistics of experimental and simulated trajecto
can be compared on a quantitative level. In the experim

FIG. 11. Trajectories recorded with a photodiode positioned
the most intense second order reflex and 24-bit ADC; the excita
is identical with that in Fig. 6.~a! At low voltage (U512.2 V) the

measured raw signalAraw fluctuates around a background levelĀ0,
interrupted by infrequent bursts.~b! Corrected intensityA(t)

5uAraw(t)2Ā0u at U512.9 V where we assumel50 ~see statis-
tical analysis!. The up-down symmetry of the curve is recognize
The experimental dynamic range is limited by saturation for la
amplitudes and by background noise for small amplitudes.~c! At
U513.6 V the on state is dominant, interrupted infrequently
breakdowns to the quiescent off state.
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the distribution of laminar phases is calculated by introd
ing an arbitrary threshold intensityAon, and the durations of
periods where the intensity curve stays completely be
that threshold are determined. A thresholdAon50.05 V has
been chosen here; it corresponds to the geometrical ave
of lower and upper bounds of the photosensor signal.
expected in on-off intermittency, the choice of the actu
threshold value is not critical. Figure 12~left! depicts the
distribution of the laminar phase durations extracted fr
trajectories for DMP excitation with three different voltage
the same values as in Fig. 11. The time axis is scaled with
jump ratea of the DMP. These distributions were extracte
from 4200 s runs of the experiment; each trajectory was
corded with a sampling rate of 1000 s21 ~with the fast AD
converter!, so that a range of six orders of magnitude int is
resolved. The dash-dotted line indicates at23/2 dependence,
which is predicted theoretically exactly at the sample sta
ity threshold,l50, when no additive noise is present. In th
short-time range, for 2nt,1, the curve deviates from thi
predicted fundamental dependence, because one appro
the time scale of the driving DMP process and specific
tails of the driving process become important. In the lon
time limit of the curve, the power law behavior of the e
perimental trajectories breaks down mainly because of
lower boundary~additive noise level! for the system vari-
ables. For long periods at least one of the variables (q,w)
reaches a~thermal! noise level which prevents excursions
the system variables to values much belowAon; trajectories
are essentially reflected there. This leads to faster inject
of the next burst aboveAon, and thus to a lower probability
of long-duration periods. The flat shoulder indicated in F
12 is the outcome of this effect@6#.

Figure 12~right! shows the results of the correspondin
simulations. Limits to the system parameters were set
given in Eq. ~13!. The voltages used in the simulation a
Uc

theor514.2 V ~corresponding to the critical valuel50),
and Uc

theor60.7 V chosen in the vicinity of this threshold
The critical voltage in the simulated curves is derived fro

t
n

.
e

FIG. 12. Normalized distributionp(2at) of durations t of
laminar phases from experimental~left! and simulated~right! tra-
jectories; voltages as in Figs. 11~a!–11~c!. Here the trajectories
were recorded in 12-bit resolution with a 1 ms sampling rate. The
time axis was scaled with the jump ratea52n. The thresholdAon is
set to 0.05 V. Thet23/2 power law holds over several decades; b
agreement is found atU5Uc

expt which we assign tol50.
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THOMAS JOHN, ULRICH BEHN, AND RALF STANNARIUS PHYSICAL REVIEW E65 046229
the analytically calculated Lyapunov exponent@28#. It is in
perfect agreement with the numerical simulation of the t
jectories in the absence of upper and lower limits. In
experiment, it was proposed earlier that a reasonable de
tion of the critical voltage can be found when the statisti
distribution of the laminar phases duration is analyzed. T
we assume that the experimental critical driving volta
Uc

expt is reached when the distribution of laminar phases
rations is most adapted to at23/2 dependence@11#. Knowl-
edge of the relation~6! between director deflection ampl
tudes and scattering intensities is not necessary for
determination of the distribution of laminar phases. On
other hand, the laminar phase distribution is not the m
sensitive criterion for the determination of the sample sta
ity threshold as will be shown in the next section.

E. Distribution of pattern amplitudes

Another fundamental prediction for the statistics of on-
intermittent processes is the distribution of amplitudes in
trajectory. It has been shown@3,4,26,27# that the distribution
of the amplitudes of the intermittent variableÃ should follow
a power law

p~Ã!}Ã211h ~14!

in the vicinity of the thresholdl50. The parameterh}l
vanishes at the threshold of the instability.

A statistical analysis of the recorded trajectories requ
knowledge of the quantitative relation~6! between the mea
sured scattering intensityA and the amplitude of the patter
w. One can easily show that a similar power law as for
amplitude distributions of the intermittent variablew holds
also for quantitiesA(w) that depend on themth power ofw.
Whenp(w)}w211h andA}wm then

p~A!}A211h/m. ~15!

The hyperbolic dependence at the thresholdl50 is pre-
served. Our observableA(t), the scattered intensity in th
second order reflex, is related to the director deflection a
plitude in first approximation by Eq.~5!, and this relation
provides another opportunity to determine the critical volta
Uc . Figure 13 shows the distribution of scattering amp
tudesA(t) for zero driving voltage and four representati
voltages in the vicinity of the stochastic thresholdUc . A
power law can be fitted to the middle part of all these dis
butions. For low scattering amplitudes, the curve devia
from the fit because of the superimposed background sca
ing. For large amplitudes, the power law breaks down
cause of the saturation of the system variables and bec
the optical characteristics, Eq.~5!, are not valid for large
director deflections. In the numerically simulated trajec
ries, Fig. 14, where hard boundaries, cf. Eq.~13! have been
used, these effects are condensed in the edges ofp(A). Atheor

is computed fromw by means of Eq.~6!.
In Fig. 13~b!, the amplitude forU512.9 V is closest to

the exponent21 in the power law; therefore we assign th
voltage to the experimental threshold voltageUc

expt. This
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value is in good coincidence with the critical voltage fou
from the best fit of the laminar phase distributions to at23/2

law. Both statistical definitions of the experimental thresho
voltage agree consistently, and the numerical simulati
confirm the equivalence of the thresholds determined fr
the distributions of amplitudes and laminar phase duratio

At voltages near the threshold, the power law still hol
and the exponent211h can be extracted. Typical ampli
tude distributions are depicted in Figs. 13~c! and 13~d!. The
exponents extracted from experimental data as well as f
simulated trajectories are shown in Fig. 15. In accorda
with the natural scales of the system, the axis was norm
ized by the critical voltage to obtain a control parametere.
The optical relation~6! has been applied to retrieve patte
amplitudesÃ which can be compared to the simulation fro
experimental scattering intensitiesA. The good agreement in

FIG. 13. Distribution density of the burst amplitudesA(t) mea-
sured over 4200 s for the same DMP voltages as in Figs. 11~a!–
11~c!. ~d! For U511.8 V ~large negativel) and~e! background at
zero excitation voltage. In their middle parts, the distributions fit
a power lawA211h. From the curve with slope21 we find the
experimental voltage corresponding tol50.

FIG. 14. Amplitude distribution densitiesp(Atheor) of the simu-
lated trajectories. The power law holds in the complete dynam
range; the fixed boundaries@Eq. ~13!# generate abrupt edges in th
support ofp(Atheor). The critical voltageUc

theor514.2 V deviates
somewhat from the experimental value. The graphs represenU
514.2 V ~solid!, 14.9 V ~dotted!, and 13.5 V~dashed!.
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FUNDAMENTAL SCALING LAWS OF ON-OFF . . . PHYSICAL REVIEW E65 046229
the slopes of theh(e) curves ate>0 justifies the application
of the optical relation Eq.~6!.

F. Power spectral density

Finally, we discuss the power spectrum of the intermitt
process. The main general theoretical prediction for
power spectral density forl50 is a square root frequenc
dependence@21–23,26# in a certain frequency range. If an
quantity with a power law dependence on the intermitt
variable is observed, this prediction is equally valid@22#. The
PSD predicted for a process driven by multiplicative noise
qualitatively different from a process where noise coup
additively to the system variables.

In the range of very small frequencies, a constant PSD
expected because any time correlation in the system v
ables is destroyed by additive noise and the limited dyna
cal range of (q,c). In the high frequency tail, a PSD}v22

dependence is expected, similar to that of a simple stocha
process with exponentially decaying autocorrelation fu
tion. The relation for the high frequency limitv→` can be
obtained analytically@from Eq. ~50! in @22##

PSD}H const if v,v1 ,

v21/2 if v1,v,v2 ,

v2 if v.v2 .

~16!

The crossover frequenciesv1 andv2 where the asymptotic
exponent changes depend upon the Lyapunov exponen
specific properties of the additive and multiplicative noise

Figure 16 displays the PSD of experimentally record
trajectoriesA(t) for three voltages~the same as in Fig. 12!. It
was obtained from Fourier transformation of 4.23106 data
points of the optical trajectories in an interval of 4200 s.

FIG. 15. Voltage dependence of the exponent211h (s ex-
periment; simulation!. The empirical error bars illustrate th
uncertainty of the fit and variations between individual runs of
measurements. Fore,0, bursts appear infrequently and th
statistic is rather poor. A scattering efficiency according to Eq.~6!
has been used to relate measured optical data to the simula
(Ã}uwu}A1/4). Along the dash-dotted line the Lyapunov expone
is assumed to be zero and the corresponding voltagee50. Bigger
symbols indicate the applied voltages depicted in Fig. 13.
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the logarithmic plot, the curves have been smoothed by
eraging the spectral energy over intervalsDv proportional to
v.

At the threshold voltageUc
expt ~b!, the v21/2 and v22

regions are well separated, and the existence of a cons
PSD in the low frequency wing seems to be indicated. In
high frequency wing, influences of the mean frequency
the driving process,n580 Hz, are observable.

The PSD’s obtained from the numerical simulation~see
Fig. 17! are not in agreement with the experiment, in partic
lar the square root dependence is not reproduced. Only w
the dynamical range is chosen unrealistically large, do
obtain a PSD}v21/2. The choice of a realistic lower boun
@Eq. ~13!#, i.e. additive noise with reasonable amplitude, d
stroys any long-time correlations. Therefore, a simulation

e

ns
t

FIG. 16. Power spectral density of trajectories~a!–~c! in Fig. 12.
AD converter with 1 ms sample time and 12-bit resolution w
used. General predictions for the PSD in on-off intermittency are
exponent zero for very low frequencies, (21/2) for medium fre-
quencies, and (22) for high frequencies; see Eq.~16!. Near the
critical voltageUc

expt, the experimental data indicate such a beha
ior. The curve has been smoothed by averaging the density
intervals proportional to frequency.

FIG. 17. Simulated power spectrum atUc
theor with different

lower bounds @cmin5531023 (d), 10210 (n), 102100 (s)#;
upper limitcmax50.5. The theoretical exponent21/2 is found only
for unrealistically low background.
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THOMAS JOHN, ULRICH BEHN, AND RALF STANNARIUS PHYSICAL REVIEW E65 046229
the PSD with similar parameters as in Fig. 14 yields a p
nounced constant low frequency region.

VI. SUMMARY

On-off intermittency in stochastically driven electroco
vection of nematic liquid crystals in the conductive regim
has been investigated experimentally and by numerical si
lations. Results were presented for excitation with the
chotomous Markov process, but the resulting fundame
statistical behavior is qualitatively similar for many oth
types of stochastic excitations.

Laser scattering was used to determine the wavelen
and time resolved pattern amplitudes. It was shown exp
mentally and confirmed in the simulation of the electr
hydrodynamic equations that under stochastic excitation
pattern selects its wavelength within a narrow band; the
fore the intensity of scattered laser light at a fixed scatter
angle can be used to characterize the temporal behavio
the pattern amplitude. The resulting trajectories were a
lyzed quantitatively and their statistical properties extract

The statistical analysis confirms that the distribution d
sity of laminar phase durationst is in full agreement with
theoretical predictions. In particular, thet23/2 power law de-
scribes the statistics of laminar phase durations at the st
ity threshold in the conduction regime over four decades
t.

The distribution density of pattern amplitudesA in the
vicinity of the instability threshold is also in quantitativ
agreement with the predicted power law. Deviations
found in the experiment in the limits of low and high patte
amplitudes where additive noise~smallA) and nonlinearities
in the dynamic equations~largeA) influence the dynamica
behavior of the system variables. With increasing voltage
exponent211h increases. Theory predicts a relationh
}l for on-off intermittence, which allows us to define
critical voltageUc

expt from the slopes of the amplitude distr
bution functions. The critical voltage obtained with th
method agrees with the value derived from the analysis
the laminar phase durations, i.e., the two definitions cha
terize consistently the experimental system as well as
numerical simulations. This provides a quantitative criter
for the stability thresholdUc

expt of stochastically driven EHC
patterns, irrespective of the fact that the Lyapunov expon
is not directly accessible in the experiment. From a pract
aspect, the distribution density of the pattern amplitude
the more sensitive measure for the determination ofUc

expt.
In the simulations of the corresponding model syste

trajectories that are characterized by thet23/2 and A21

power laws are obtained when the driving parameters
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chosen such that the Lyapunov exponent is zero~sample sta-
bility threshold @28#!. This result coincides with theoretica
predictions of the universal behavior of on-off intermitten
@7#. In the vicinity of the critical voltage the linear depen
dence of the exponent211h on l is also in quantitative
agreement with the numerical simulation. In the experime
we cannot relate the exponent of the amplitude distribut
to a Lyapunov exponent. However, the functional dep
dence ofh on the reduced voltagee is in satisfactory agree
ment with the calculated data~see Fig. 15!.

We note that, although the statistical characterizations
experimental and simulated data are in good quantita
agreement, the experimental and calculated threshold v
ages and wave numbers can differ on an absolute scal
roughly 10%~see Fig. 2!. This is mainly the consequence o
the simplified assumptions of director and flow modes in
model; it is not relevant for the description of on-off inte
mittent behavior.

In the power spectrum of the experimental trajectories
v21/2 dependence is indicated in a small frequency range
agreement with predictions of general theories@21,22#; in the
high frequency tail, the PSD adopts anv22 behavior~Fig.
16!. In the numerical simulations with boundaries to the s
tem variables~Fig. 17!, we did not find thev21/2 depen-
dence; it is reproduced only when boundaries of the tra
tory are disregarded and a simulation with quasiunlimi
dynamical amplitude range is performed. This discrepa
leads us to the conclusion that the PSD is particularly se
tive to additive noise and the full nonlinear dynamical equ
tions. The appearance of thev21/2 range in the experimenta
data in apparent agreement with general predictions sh
therefore not be overestimated.

We note that, although the investigated experimental s
tem represents a spatially extended dissipative system, it
been shown in this study that its fundamental statistical pr
erties can be reproduced in simulations of a 232 evolution
matrix model with global pattern amplitude, thus neglecti
spatial details of the pattern. In the case of a global driv
parameter, the spatial phase does not play a role as lon
other noise sources are excluded. Additive noise, howe
may introduce phase drifts in the system@70,71# and is re-
sponsible for complex spatiotemporal characteristics. A
tailed spatiotemporal description of the system represent
ongoing interesting task.
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